if ∫-1ax+1x+24dx = 1081 and a>-2 determine a eg. u = x+2 and du=dx ∫-1ax+2-1x+24dx become ∫-1au-1u4du ∫-1a(uu4-1u4)du = ∫-1a(u-3-u-4)du u-2-2-u-3-3 = -u-22+u-33 we can change u = x+2 -x+2-22+x+2-33 and interval integral -a+2-22+a+2-33 - --1+2-22+-1+2-33 = 1081 -a+2-22+a+2-33 - -1-22+1-33 = 1081 -a+2-22+a+2-33 - -16 = 1081 -a+2-22+a+2-33 = 1081-16 -a+2-22+a+2-33 = -21486 a+2-33-a+2-22 = -21486 2a+22-3a+23a+25 = -21486 2a+22-3a+236a+25 = -21486=-631458 if we input a=1 21+22-31+2361+25 = -631458 so a= 1
No comments